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Continued Fractions Hierarchy of Rotation Numbers in Planar Dynamics
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Global bifurcations such as crises of attractors, explosions of chaotic saddles, and metamorphoses
of basin boundaries play a crucial role in understanding the dynamical evolution of physical systems.
Global bifurcations in dissipative planar maps are typically caused by collisions of invariant manifolds
of periodic orbits, whose dynamical behaviors are described by rotation numbers. We show that the
rotation numbers of the periodic orbits created at certain important tangencies are determined by the
continued fraction expansion of the rotation number of the orbit involved in the collision.
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In complex experimental systems, nonlinearities trigger
sudden changes in system behavior which are not caused
by local bifurcations. Much attention has focused on
crises of attractors [1], metamorphoses of basin bounda-
ries [2], and more recently on explosions of chaotic
saddles [3,4]. It has been established that these global
bifurcations are typically triggered by collisions of certain
invariant manifolds associated with particular periodic
orbits. At such a collision, the complication of the dynam-
ics changes markedly, as infinitely many other periodic
orbits are created. Particularly important for planar
systems is the rotation number of the orbit, which
measures average rotation around the chaotic invariant
set in question [5]. Comprehensive studies of rotation
numbers in two-dimensional phase spaces include those
of dissipative twist maps [6] and one-parameter families
of invertible planar maps [7]. In this Letter we report
on a simple method to express the periods, and more
generally the rotation numbers, of the infinity of periodic
orbits that are born at these global bifurcations. The new
rotation numbers can be expressed in terms of a continued
fraction expansion of the orbit involved in the bifurcation.
Moreover, the hierarchy of the periodic orbits formed
corresponds exactly to the “depth” of the rotation number
when written in its continued fraction expansion.

Continued fractions are useful in several different
scientific disciplines, often where approximation of
irrational numbers is required. They are used for renor-
malization group theory [8], to estimate the eigenvalues
of the Frobenius-Perron operator [9], to approximate irra-
tional winding numbers for Kol’mogorov-Arnol’d-Moser
tori [10] and the critical parameter values at which these
tori break [11], and to obtain minimizing periodic orbits
[12]. They are used in an algorithm for computing stable
and unstable directions of maps [13]. There is also a
so-called matrix continued fraction expansion technique
that can be applied to a model for Bloch electrons in a
magnetic field [14] and to the Fokker-Planck equation
[14,15]. They are also used to describe winding numbers
in diode resonator systems [16].
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Figure 1 shows rotation numbers for accessible periodic
orbits on a chaotic attractor Am for the Hénon map

�x, y� ! �m 2 x2 2 0.3y, x� , (1)
where m is a scalar parameter. A point z on the attractor is
called accessible if there is a path in the complement of Am

which has z as its only limit point in Am. For a fixed pa-
rameter value all accessible orbits rotate around the edge of
the attractor at the same asymptotic rate [17]. The devil’s
staircase structure of this graph reflects the order in which
periodic orbits are incorporated into the Hénon attractor
as the accessible periodic orbits. We examine how and
with what rotational structure these orbits are created.

We begin by illustrating the birth of periodic orbits at a
rotary tangency. Figure 2(a) shows a sketch of a period-3
orbit undergoing a p1 ! p2 ! p3 ! p1 rotation. Also
drawn are the stable manifolds and the interior branches
of the unstable manifolds of the three points. The interior

FIG. 1. Devil’s staircase of accessible rotation numbers for
the Hénon map, Eq. (1). The graph shows the rotation rate
of the periodic orbits on the outside edge of the attractor as a
function of the parameter m. Although there are periodic orbits
of infinitely many periods in the attractor, all accessible points
rotate around the outside edge of the attractor at an identi-
cal rate.
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FIG. 2. Sketches of rotary tangencies. (a) At a co-rotary
inner tangency. The box denoted A has horseshoe dynamics
under the �3n 2 1�th iterate of the map F. (b) Slightly after
a counter-rotary outer tangency. The box denoted A forms a
horseshoe under the �3n 1 1�th iterate of the map.

branch of the unstable manifold of a point pn in the
orbit is tangent to a branch of the stable manifold of
the next point in the orbit pn11. These simultaneous
tangencies produce a simple closed curve, formed by
alternating pieces of unstable and stable manifolds, which
goes through all points in the periodic orbit. This type
of tangency, when an unstable manifold collides with the
stable manifold of an adjacent point of the same periodic
orbit, is called a rotary tangency [18,19].

The two-dimensionality of the plane restricts rotary tan-
gencies to two distinct types. The two types of rotary tan-
gency are distinguished by whether the unstable manifold
participating in the tangency travels in the direction of ro-
tation of the periodic orbit, or against that direction. In
terms of Fig. 2(a), the two possibilities are (i) the unstable
manifold of pn is tangent to the stable manifold of pn11
or (ii) the unstable manifold of pn is tangent to the stable
manifold of pn21. We call the former a co-rotary tangency
since the unstable manifold turns toward the next point in
the rotational order; the latter is called a counter-rotary
tangency since the unstable manifold turns to the previous
point in the rotational order. At a rotary tangency of a
3630
periodic orbit with a general rational rotation number, the
unstable manifold always turns toward an adjacent point
in the orbit, which is not necessarily the next or previous
iterate.

For example, for a period-7 orbit of rotation num-
ber 2�7, the order of the points in the orbit along
a circle would be p1 ! p5 ! p2 ! p6 ! p3 ! p7 !
p4 ! p1. In this case, the unstable manifold of p1 is tan-
gent to the stable manifold of p5 in the co-rotary case and
to the stable manifold of p4 in the counter-rotary case.

There is a second distinction to be made among rotary
tangencies: the branch of the unstable manifold can be
tangent so as to limit on the corresponding unstable
branch of the adjacent point in the orbit—or it can limit
on the opposite branch at the adjacent point. The first
is called an inner tangency, while the second is called
an outer tangency. Figure 2(a) depicts an inner tangency,
and Fig. 2(b) shows an outer tangency. In this figure,
the inner tangency is co-rotary, and the outer tangency
is counter-rotary. At an inner rotary tangency, periodic
orbits are created inside the closed curve formed by the
tangent manifolds. For area-contracting maps, such as
maps in the Hénon family, these periodic orbits are all
created before the tangency.

Let F be an invertible planar map. In order to
calculate the periods of orbits of F created at an inner
tangency, we analyze the formation of horseshoes [20], as
depicted in Fig. 2(a). Begin with the horseshoe-shaped
region marked B. Iterate forward to F�B�, and consider
backward images of F�B� along the unstable manifold
of p2. (Every third iterate of F21 moves the region
back along the unstable manifold toward p2.) For some
n, F23n���F�B���� reintersects B. Let A � F23n���F�B���� �
F23n11�B�. Thus F3n21 maps the rectangle A over
itself in a horseshoe image. The invariant set of this
horseshoe has periodic orbits which are multiples of the
minimum period 3n 2 1. For each n sufficiently large,
such a horseshoe is formed. (See [19] for details of the
construction.) We concentrate on the regular saddle of
(minimum) period 3n 2 1 in each horse-shoe [21].

We can also calculate the rotation number of these
saddles, the rotation being calculated along the closed
curve formed by the rotary tangency. In the 3n 2 1
iterates it takes for the horseshoe image to reintersect the
rectangle, the region has completed n rotations near the
closed curve, and thus the saddle has rotation number
n��3n 2 1�. These orbits exist at least for n sufficiently
large, and, in particular, there are infinitely many of them.
To express these rotation numbers as continued fractions,
denote

�a1, a2, . . . , aj� �
1

a1 2
1

a22
1

a3 2 . . .
2

1
aj

, (2)
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where the ai are positive integers, and the integer j is
called the depth of the expansion. Figure 2(a) shows a
co-rotary inner tangency of a period-3 orbit with rotation
number �3� � 1�3. The new rotation numbers created
at this tangency are of form �3, n� � n��3n 2 1�. More
generally, the following fact [19] holds.

Fact 1. At a co-rotary tangency of a periodic orbit
with rotation number �a1, . . . , aj� as in Eq. (2), infinitely
many periodic orbits are created with rotation numbers
�a1, . . . , aj , n� for all sufficiently large n.

Figure 3(a) shows a computer study of a period-3 co-
rotary inner tangency of the Hénon map, occurring at
m � 2.124 68. Only part of the manifolds have been
computed to be able to distinguish the points of tangency.
This event leads to a boundary crisis [23]. The 3�8 �
�3, 3� saddle first appears at m � 1.995 31, while the
4�11 � �3, 4� saddle is created at m � 2.113 19. Thus
the tangency of the invariant manifolds of the depth 1
orbits leads to the creation of infinitely many depth 2
orbits, each of which leads to depth 3 orbits and so on.
The continued fraction depth provides an organizational
hierarchy for these periodic orbits.

FIG. 3. Rotary tangencies for the Hénon map. (a) Inner tan-
gency at mc � 2.124 68 (triggers a boundary crisis). (b) Outer
tangency at m � 1.380 31 (triggers an isolated chaotic saddle
explosion). The rectangle shows the location of one of the tan-
gency points. The computer simulations of Figs. 3 and 4 used
DYNAMICS [22].
The pattern of rotation numbers which arise at a counter-
rotary tangency is given by a slightly different type of
continued fraction. Figure 2(b) shows a counter-rotary
outer tangency of a period-3 orbit. A rectangular domain
maps back over itself after 3n 1 1 iterates. These periods
are observed in [3]. In this case, there is a sequence
of saddles, one of each rotation number n��3n 1 1�, for
n sufficiently large, converging to points in the period-3
orbit. Note that in this case, horseshoes can form only
outside the closed curve formed by the tangent manifolds.
For an area-contracting map, they form only after the
tangency has occurred, as shown in Fig. 2(b).

For the counter-rotary tangency, we need to introduce
the continued fraction

�a1, a2, . . . , aj� �
1

a1 1
1

a2 2
1

a3 2 . . .
2

1
aj

. (3)

In the example above, the counter-rotary tangency
of the period-3 orbit creates a sequence of saddles,
one of each rotation number �3, n� � n��3n 1 1�, for
sufficiently large n. More generally, the following holds.

Fact 2. At a counter-rotary tangency of a periodic orbit
with rotation number �a1, . . . , aj� as in Eq. (3), infinitely
many periodic orbits are created with rotation numbers
�a1, . . . , aj , n� for all sufficiently large n.

Figure 3(b) shows a counter-rotary outer tangency of
a period-3 saddle of the Hénon map. At this tangency,
periodic orbits with rotation numbers �3, n� � n��3n 1

1� are formed, for n $ 2. A 2�7 � �3, 2� orbit (shown
in Fig. 4) for this family of maps has a counter-rotary
outer tangency at approximately m � 1.385 that creates
orbits with rotation numbers �3, 2, n� � �2n 2 1���7n 2

3� � �2�n 2 1� 1 1���7�n 2 1� 1 4�, for all sufficiently
large n.

Facts 1 and 2 follow from the above discussion and
elementary properties of continued fractions. In the
co-rotary case (Fact 1), consider an orbit with rotation
number M�N � �a1, . . . , aj�. Assume that the box A in
Fig. 2(a) is moved after �n 2 1�N iterations of the map
along the unstable manifold until it maps in the vicinity
of the adjacent orbit point in the direction of the orbit
rotation. During this time it will have made slightly more
than �n 2 1�M rotations. From this point, the number
of iterations required to map the box back over itself is
K , where H�K � �a1, . . . , aj 2 1�. This follows from
the fact that H�K is the unique solution of the equation
1 1 KM � 0 1 HN , up to multiples of N . Since H
extra rotations will have occurred, the rotation number
of the new orbit created as in Fig. 2(a) will be ��n 2

1�M 1 H����n 2 1�N 1 K� � �n 2 1� �a1, . . . , aj� ©
�a1, . . . , aj 2 1� � �a1, . . . , aj , n�, where © denotes Farey
sum. The proof of Fact 2 is analogous, although the
box precesses opposite to the direction of rotation during
3631
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FIG. 4. A period-3 orbit p1, p2, p3 with its stable (grey) and
unstable (black) manifolds computed slightly after counter-
rotary outer tangency (m � 1.384 77). Also shown is a
period-7 orbit (rotation number 2�7) which has been created
after the outer tangency of the period-3 orbit. Notice that the
period-7 orbit is in the neighborhood of the tangency points.

the �n 2 1�N iterations. In this case we must define
M�N � �a1, . . . , aj� and H�K � �a1, . . . , aj 2 1�, be-
cause they solve the equation 21 1 KM � 0 1 HN ,
and so the rotation number of the new orbit will be
��n 2 1�M 1 H����n 2 1�N 1 K� � �a1, . . . , aj , n�.

In the Hénon family there are infinitely many inner
and outer rotary tangencies. (In [19] it is shown that
an inner rotary tangency at one level implies the ex-
istence of infinitely many rotary tangencies at the next
level.) The fact that the inner tangencies are co-rotary and
the outer tangencies are counter-rotary follows from the
relative speeds of the rotations on either side of the medi-
ating periodic orbit (i.e., the orbit that undergoes the tan-
gency). In Fig. 3 there is a fixed point in the lower left of
the picture (not shown). Points move more slowly outside
the period three orbit than inside, due to the presence of the
fixed point. Thus the unstable manifolds turn in the oppo-
site direction to the rotation of the map (counter-rotary) for
the outer tangency, and in the same direction (co-rotary)
for the inner tangency. There is no reason to assume that
the designations of co-/counter-rotary and inner/outer tan-
gency are dependent, although the circumstance that links
them in the Hénon map would seem to be a typical one.

Figure 1 hints at the complexity of rotation numbers
created by the process described above. The acces-
sible orbits undergo rotary tangencies, creating an infi-
nite sequence of periodic orbits, each of which repeats the
process on a finer scale. The continued fraction represen-
tation of rotation numbers provides a simple hierarchical
description of this complex web of periodic orbits.
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